Witaj, Gość
Główna » Artykuły » Moje artykuły

WAVES

WAVES

Waves form on the ocean and lakes because energy from the wind is transferred to the water. The stronger the wind, the longer it blows, and the larger the area of water over which it blows (the fetch), the larger the waves are likely to be.

The essential parameters of a wave are its wavelength (the horizontal distance between two crests or two troughs), its amplitude (the vertical distance between a trough and a crest), and its velocity (the speed at which wave crests move across the water).imageRelatively small waves move at up to about 10 km/h and arrive on a shore about once every 3 seconds. Huge waves move about five times faster (over 50 km/h), but because their wavelengths are so much longer, they arrive less frequently – about once every 14 seconds.

As a wave moves across the surface of the water, the water itself mostly moves up and down and only moves a small amount in the direction of wave motion. As this happens, a point on the water surface describes a circle with a diameter that is equal to the wave amplitude. This motion is also transmitted to the water underneath, and the water is disturbed by a wave to a depth of approximately one-half of the wavelength.

The one-half wavelength depth of disturbance of the water beneath a wave is known as the wave base. Since ocean waves rarely have wavelengths greater than 200 m, and the open ocean is several thousand meters deep, the wave base does not frequently interact with the bottom of the ocean. However, as waves approach the much shallower water near the shore, they start to “feel” the bottom, and they are affected by that interaction. The wave “orbits” are both flattened and slowed by dragging, and the implications are that the wave amplitude (height) increases and the wavelength decreases (the waves become much steeper). The ultimate result of this is that the waves lean forward, and eventually break.

Waves usually approach the shore at an angle, and this means that one part of the wave feels the bottom sooner than the rest of it, so the part that feels the bottom first slows down first. In open water, these waves had wavelengths close to 100 m. In the shallow water closer to shore, the wavelengths decreased to around 50 m, and in some cases, even less.

Even though they bend and become nearly parallel to shore, most waves still reach the shore at a small angle, and as each one arrives, it pushes water along the shore, creating what is known as a longshore current within the surf zone (the areas where waves are breaking).

Another significant effect of waves reaching the shore at an angle is that when they wash up onto the beach, they do so at an angle, but when that same wave water washes back down the beach, it moves straight down the slope of the beach. The upward-moving water, known as the swash, pushes sediment particles along the beach, while the downward-moving water, the backwash, brings them straight back. With every wave that washes up and then down the beach, particles of sediment are moved along the beach in a zigzag pattern.

The combined effects of sediment transport within the surf zone by the longshore current and sediment movement along the beach by swash and backwash is known as longshore drift. Longshore drift moves a tremendous amount of sediment along coasts (both oceans and large lakes) around the world, and it is responsible for creating a variety of depositional features.

A rip current is another type of current that develops in the nearshore area and has the effect of returning water that has been pushed up to the shore by incoming waves. Rip currents flow straight out from the shore and are fed by the longshore currents. They die out quickly just outside the surf zone, but can be dangerous to swimmers who get caught in them. If part of a beach does not have a strong unidirectional longshore current, the rip currents may be fed by longshore currents going in both directions.

BEHAVIOR OF WAVES APPROACHING SHORE

On the open sea, waves generally appear choppy because wave trains from many directions are interacting with each other. Where crests converge with other crests, called constructive interference, they add together producing peaks, a process referred to as wave amplification. Constructive interference of troughs produces hollows. Where crests converge with troughs, they cancel each other out, called destructive interference. As waves approach shore and begin to make frictional contact with the seafloor (i.e., water depth is a half wavelength or less) they begin to slow down, but the energy carried by the wave remains the same, so they build up higher. The water moves in a circular motion as the wave passes, with the water that feeds each circle being drawn from the trough in front of the advancing wave. As the wave encounters shallower water at the shore, there is eventually insufficient water in front of the wave to supply a complete circle, and the crest pours over creating a breaker.

Some of the damage done by storms is from storm surges. Water piles up at a shoreline as storm winds push waves into the coast. Storm surge may raise sea level as much as 7.5 m (25 ft), which can be devastating in a shallow land area when winds, waves, and rain are intense.

TSUNAMIS

A particular type of wave is generated by any energetic event affecting the sea floor, such as earthquakes, submarine landslides, and volcanic eruptions. Such waves are called tsunamis and, in the case of earthquakes, are created when a portion of the seafloor is suddenly elevated by movement in the crustal rocks below that are involved in the earthquake. The water is suddenly lifted, and a wave train spreads out in all directions from the mound carrying enormous energy and traveling very fast (hundreds of miles per hour).

Tsunamis may pass unnoticed in the open ocean because the wavelength is very long and the wave height is shallow. However, as the wave train approaches the shore, each wave makes contact with the shallow seafloor, friction increases, and the wave slows down. Wave height builds up, and the wave strikes the shore as a wall of water a hundred or more feet high. The massive wave may sweep inland well beyond the beach. This is called the tsunami run-up, which destroys structures far inland. Tsunamis deliver a catastrophic blow to observers at the beach as the water in the trough in front of it is drawn back toward the tsunami wave, exposing the seafloor. Curious and unsuspecting people on the beach may run out to see exposed offshore sea life only to be overwhelmed when the breaking crest hits.

LICENSE

 

Icon for the Creative Commons Attribution 4.0 International License

Introduction to Physical Geography by R. Adam Dastrup is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Kategoria: Moje artykuły | Dodał: kolo (2019-04-08)
Wyświetleń: 37 | Rating: 0.0/0
Liczba wszystkich komentarzy: 0
Imię *:
Email *:
Kod *:
Kategorie sekcji
Mini-czat
Statystyki

Ogółem online: 1
Gości: 1
Użytkowników: 0
Formularz logowania
 Statystyki